SOFC 燃料極の三次元構造再構築と過電圧予測

鹿園直毅, 菅野大輔, 松崎勝久, 高木紀和, 澄野慎二, 笠木伸英 東京大学

Numerical simulation of SOFC anode polarization using three-dimensional reconstructed microstructure

Naoki SHIKAZONO, Daisuke KANNO, Matsuzaki KATSUHISA, Norikazu Takagi, Shinji Sumino and Nobuhide KASAGI

The University of Tokyo

A three-dimensional numerical simulation of the solid oxide fuel cell (SOFC) electrode overpotential is conducted in a microstructure which is reconstructed by a dual-beam focused ion beam-scanning electron microscope (FIB-SEM). The three-phase boundary (TPB) density and tortuosity factors are carefully evaluated. Gaseous, ionic and electronic transport equations are solved by a lattice Boltzmann method with electrochemical reaction at the three-phase boundary. Local three-dimensional distributions of electrochemical potential and current density inside the electrode microstructure are obtained. Their non-uniformities are attributed to the scattered three-phase boundaries and complex transport paths through the solid phases.

Key Words : SOFC, Electrode, Polarization, Microstructure

1. 緒 言

固体酸化物形燃料電池(SOFC)は発電効率が高く, 多様な燃料を使用可能なことから、次世代の重要 なエネルギー変換機器として期待されている. そ のため, 更なる低コスト化と信頼性向上に向けた 研究開発が現在精力的に進められている. SOFC 研究に伴う困難の一つに、電極微細構造の複雑さ が挙げられる. 例えば, 三相界面での電極反応機 構,炭素析出や Redox 等の劣化現象,不定比性酸 化物の物性等を評価するためには、電極微細構造 とそこでのポテンシャル分布の定量化が不可欠で ある.このような中,電極微細構造が電極性能に 与える影響を定量的に把握する研究が報告される ようになってきたが(1)~(7), 電極微細構造から過電 圧特性を計算する詳細な数値計算手法は確立され ていない.本報では、集束イオンビーム走査型電 子顕微鏡(FIB-SEM)を用いた電極3次元微細構 造の再構築法⁽⁷⁾,およびその構造を用いた電極内 ポテンシャル場の3次元数値計算手法について報 告する⁽⁸⁾.

2. 電極3次元構造の再構築

2・1 サンプル準備

本研究では、電解質 (YSZ)支持のボタン型セルを使 用した⁽⁹⁾. 空隙を判別するために樹脂埋めを行った. 微細空隙に樹脂が隙間なく浸透するように、低粘 度のエポフィックス (丸本ストルアス)を用いた. また、空隙内の気体の残留を防ぐため、真空含浸 装置のエボヴァック (丸本ストルアス)内で約 12 時間かけて硬化させた. 続いて、手作業で粗研磨 を行った後に、Cross-section Polisher (CP、日本電 子)を用いて平滑面を作成した. YSZ と樹脂は絶 縁体であるため、帯電を防ぐためにカーボンをコ ーティングし、試料と台座をカーボンペースト (TED PELLA)を塗布して導通させた.

2·2 FIB-SEM 撮像

図1に、FIB-SEM(Carl Zeiss, NVision 40)の概要 を示す.FIB 加工断面をSEM で撮像するために, 手前の領域を除去する予備加工を施した.続いて, 取得する断面画像の位置補正を行うために,カー ボン蒸着面上に基準線を描いた.検出器はレンズ 内二次電子検出器 (In-lens SE)を用い,倍率を約 3000 倍,加速電圧を1.5-2.0kV程度とした.また, SEM オプションの角度補正を 36°に設定し,断 面を斜めから観察することにより画像が短縮する 影響を補正した.加工開始直後のステージの機械 的なドリフト,および加工が進むにつれて断面が 視野上方へ移動する影響を相殺するため,SEM の ビームシフトにより視野を適宜移動して積層画像 を取得した.

図 2 サンプル例 Fig. 2 Prepared sample

2.3 画像処理

カーボン蒸着面に FIB で描いた基準線を揃え ることで左右方向の位置ずれを修正した.また,上 下方向は CP 研磨を施したサンプル研磨面を基準 とすることで補正した.

Ni/YSZ サーメットアノードの場合, 空隙, Ni, YSZ の三相の識別が必要である. 最初の断面にお いて, エネルギー分散型 X 線分析 (Energy Diffraction X-ray: EDX) を行い, SEM 画像の輝度 値と対応させ, 空隙, Ni, YSZ 相を3 値化した. 最終 的に, 図 3 に示すような 62 nm 立方の voxel で構成さ れる3 次元構造を再構築した.

図 3 再構築された燃料極構造 Fig. 3 Reconstructed 3 dimensional structure

図4 再構築構造中の三相界面 (a) ボクセルと三 相界面の例, (b)ボクセル辺長, (c)中心間距離, (d) 重心間距離.

Fig. 4 TPB length calculation methods. (a) One of the possible voxel arrangements, (b) Edge segment length, (c) Midpoint length and (d) Centroid length.

2・4 構造パラメータの算出

再構築された3次元構造では、三相界面は例え ば図4(a)に示すように、Ni、空隙およびYSZの各 ボクセルが接する辺長として定義される.真の三 相界面が曲線の場合には、ボクセル辺長を用いて 三相界面長さを求めると、長さを過大評価する可 能性がある.ボクセル辺長から三相界面長さ求め る方法として、図4(b)~(d)に示す三つの手法を評 価した. 図4(b)はボクセル辺長の総和,図4(c)は 中点間距離,図4(d)は隣接する3つの中点で定義 される三角形の重心間距離である. これらの手法 を検証するために,図5のような二つの球で定義 された三相界面を用いた.図6は,球半径rとボ クセル長 Δx の比が $r/\Delta x=30$ の場合の検証結果を示

す.ここで、横軸は球の重なり率c=1-l/2rであ

る.また、図中のエラーバーは、球中心の座標をラン ダムに500ケース設定した際の標準偏差を示す.ボク セル辺長の場合は約50%、中点法も約15%、三相 界面長さを過大評価する.一方、重心法の誤差は 5%以内に収まっており、解像度が高ければ十分な 精度で三相界面長さを求めることができる.

図3に示したサンプルにおいて,重心法によっ て求めた三相界面長さを表1に示す.全三相界面 長さは2.556 µm/µm³となった.この値は,領域拡 張法⁽⁷⁾で求められた三相界面長さと3%以内で一 致することを確認している.電解質と集電層を設 置する方向にも依存するが,有効三相界面長さは 全三相界面長さの40~65%程度の値となった.

表1 重心法によって求められた三相界面長さ Table 1 TPB lengths obtained by centroid method.

	TPB length [μm/μm ³]
Total TPB	2.556 (100 %)
Active TPB ($x = 0 \ \mu m$: Electrolyte, $x = 18.6 \ \mu m$: CC)	1.539 (60.2 %)
Active TPB ($x = 0 \ \mu m$: CC, $x = 18.6 \ \mu m$: Electrolyte)	1.067 (41.7%)
Active TPB ($y = 0 \ \mu m$: Electrolyte, $y = 8.43 \ \mu m$: CC)	1.400 (54.8%)
Active TPB ($y = 0 \ \mu m$: CC, $y = 8.43 \ \mu m$: Electrolyte)	1.399 (54.7%)
Active TPB ($z = 0 \mu m$: Electrolyte, $z = 6.2 \mu m$: CC)	1.647 (64.4%)
Active TPB $(z = 0 \ \mu m: CC, z = 6.2 \ \mu m: Electrolyte)$	1.659 (64.9%)

続いて,各相の屈曲度ファクターτを,式(1)~(3) のように定義する.

$$D^{\text{eff}} = \frac{V_{\text{Pore}}}{\tau_{\text{Pore}}} D \quad (1)$$
$$\sigma_{\text{el}}^{\text{eff}} = \frac{V_{\text{Ni}}}{\tau_{\text{Ni}}} \sigma_{\text{el}} \quad (2)$$
$$\sigma_{\text{io}}^{\text{eff}} = \frac{V_{\text{YSZ}}}{\tau_{\text{YSZ}}} \sigma_{\text{io}} \quad (3)$$

ここで、Vは各相の体積分率、上添え字 eff は多孔 質中の有効拡散係数および有効導電率を表す.後 述する格子ボルツマン法によって再構築構造中の 拡散方程式を解き、各相の屈曲度ファクターを求 めた結果を図 7 に示す.空隙の屈曲度ファクター r_{Pore} は拡散方向に依存せず、 $r_{Pore} = 1.97$ となった. 一方、YSZ と Niの屈曲度ファクターは方向依存性 が大きい.これは、領域断面積が不足しており、 有効な導伝パスが切断されてしまったためと考え られる.

Fig. 7 Tortuosity factor

3. 電極ポテンシャル計算手法

3·1 支配方程式

空隙, Ni 相, YSZ 相の支配方程式は, それぞれ気体, 電子, イオンの拡散方程式で表される.

$$i_{\text{reac}} = 2F \cdot \nabla (D\nabla C_{\text{H}_2})$$

= $-\nabla \left(\frac{\sigma_{\text{e}^-}}{F} \nabla \widetilde{\mu}_{\text{e}^-}\right) = \nabla \left(\frac{\sigma_{\text{O}^{2^-}}}{2F} \nabla \widetilde{\mu}_{\text{O}^{2^-}}\right)$ (4)

ここで、 $C_{\rm H_2}$ は水素モル濃度、 $\tilde{\mu}_{\rm e^-} \geq \tilde{\mu}_{\rm O^{2-}}$ はそれぞれ 電子とイオンの電気化学ポテンシャルを表す.反応 電流 $i_{\rm reac}$ は三相界面でのみ現れる生成項であり、 Butler-Volmer 型方程式を用いて以下のように与えた⁽¹⁰⁾.

$$i_{\text{reac}} = i_0 L_{\text{TPB}} \left\{ \exp(\frac{2F}{RT} \eta_{\text{act}}) - \exp(-\frac{F}{RT} \eta_{\text{act}}) \right\}$$
(5)

ここで、 i_0 は単位三相界面長さあたりの交換電流密度、 L_{TPB} は体積あたりの三相界面長さを表す.気相は水素 と水蒸気の二成分拡散を考え、Dusty Gas Model を用い た.また、全圧は一定と仮定した.

酸化物中の局所平衡⁽¹¹⁾を仮定すると,局所の活性化 過電圧は次式で表される.

$$\eta_{\text{act}} = -\frac{1}{2F} \left(2\widetilde{\mu}_{\text{e}^-, \text{lyte/WE}} - \widetilde{\mu}_{\text{O}^{2-}, \text{lyte/WE}} + \left\{ \Delta G^\circ + RT \log \left(\frac{p_{\text{H}_2\text{O}}}{p_{\text{H}_2}} \right) \right\} \right)$$
(6)

ここで, $\tilde{\mu}_{e^-,lyte/WE}$, $\tilde{\mu}_{O^{2^-},lyte/WE}$ は三相界面での電子 とイオンの電気化学ポテンシャルを表す.また, 燃料極全体の過電圧は式(7)で表される.

$$\eta_{\text{anode}} = -\frac{1}{2F} \left(2\widetilde{\mu}_{\text{e}^-,\text{bulk}} - \widetilde{\mu}_{\text{O}^{2^-},\text{lyte}} + \Delta G^\circ + RT \log \left(\frac{p_{\text{H}_2\text{O},\text{bulk}}}{p_{\text{H}_2,\text{bulk}}} \right) \right)$$

ここで $\tilde{\mu}_{e^*, \text{bulk}}$ は集電層での電子の電気化学ポテ ンシャル, $\tilde{\mu}_{O^2, \text{lyte}}$ は電極-電解質界面での酸化物 イオンの電気化学ポテンシャルを表す.

(7)

3・2 計算手法

解析手法として、境界条件の定式化が容易な格子ボル ツマン法⁽¹²⁾を用いた.これは立方体格子上に離散化さ れた速度ベクトル c_i を有する粒子(気体,電子または イオン)の速度分布関数 f_i を追跡する計算手法である. 拡散方程式の計算においては3次元6速度(D3Q6)モ デル(i=1~6)で十分な計算精度が得られることが知 られており⁽²²⁾、本研究でもD3Q6モデルを用いた.衝 突項に BGK 近似を用いると、支配方程式である格子 ボルツマン方程式は以下の形で表される.

$$f_{i}\left(\mathbf{x} + \mathbf{c}_{i}\Delta t, t + \Delta t\right) = f_{i}\left(\mathbf{x}, t\right)$$

$$-\frac{1}{t^{*}}\left[f_{i}\left(\mathbf{x}, t\right) - f_{i}^{eq}\left(\mathbf{x}, t\right)\right] + w_{i}\Delta t$$
(10)

ここで、 f_i^{eq} は Maxwell の平衡分布を表す.

$$f_i^{eq}(\mathbf{x}, t) = \frac{1}{6} \sum_{i=1\sim 6} f_i(x, t)$$
(11)

また、右辺の $w_i\Delta t$ は反応生成項であり、式(4)の生成項 を各方向に対し分配することで計算した.また、 t^* は拡 散係数D(または導電率 σ)、時間刻み及び格子幅によ り定義される緩和時間であり、本研究では $t^* = 0.99$ と なるように時間刻みを設定した.

前節で取得した構造は、z 方向の厚みが 6.2μ m と小さいため、数値計算には再構築構造を 5 つ鏡像対称に 繋げたものを使用した.また、燃料極のz=0からz=Lの外側に電解質、集電層を設け、それぞれ厚みを 1.302 μ m, 0.62 μ m とした.図8 に計算領域を示す.

境界条件として,x,y方向には勾配ゼロ境界条件を課 した.また,集電層側では気体の濃度を一定とし,集 電層,電解質境界面上でそれぞれ電子,イオン電流一 定の境界条件を課した.

Fig.8 Schematic of the computational domain

4. 数値計算結果

図9に、過電圧の計算結果と実験結果⁽⁹⁾の比較を示 す.再構築して得られた解像度62 nm/pixelの構造に加 え、解像度を粗くした124,248 nm/pixelでの結果も併 せて示す.解像度が粗くなるほど、過電圧の予測結果 が大きくなるが、これは解像度が粗い場合には三相界 面密度が小さく見積もられるためである.また,解像度 が62,124 nm/pixelにおける1.2%加湿水素の計算結果 は実験結果と良い一致を示したことから、高精度な予 測を行うためには100 nm/pixel 程度の格子解像度が必 要である.一方、10%加湿水素における予測結果は、 実験結果の約2倍の値となった.今後、異なる条件下 での比較を通じて、交換電流密度や気相拡散のモデル、 および計算領域の影響等についてさらに検証する必要 がある.

次に、124 nm/pixel の構造で電流密度 *i*=0.7 A/cm²での酸化物イオンの電気化学ポテンシャル分布を図 10 に示す.縦軸は集電面での値との差を、横軸は電解質-燃料極界面からの距離である.エラーバーはその断面での標準偏差を表す.電解質から 10µm 程度で酸化物 イオンポテンシャルは大きく低下している.10%加湿 水素の場合の方が過電圧が小さいので、ポテンシャル の低下量も小さい.また、同領域ではポテンシャルの 標準偏差も大きく、平均値の 10~30%程度にも上る. 図 11(a)に、酸化物イオンの 3 次元分布を示す.図中左 側が電解質層、右側が集電層である.図9(b)は*z*=1.24µm

断面での分布である. 図 11(a)から,電解質から集電層 に向かう酸化物イオンポテンシャルの低下は一様では ないことが分かる.また,図 11(b)から,断面内におい ても大きなポテンシャル分布が生じている様子が観察 される.

Fig.9 Predicted anode overpotential

図12に、電子電流およびイオン電流分布を示す.有 効反応厚みは10~15µm程度である.図13に、イオン および電子電流線の3次元分布を示す.計算領域を鏡 像対称に構成した影響で、流線も対称となっている領 域が見られるが、イオンおよび電子が多孔質中を非常 に複雑な流れとなって伝導している様子がわかる.

profiles $\widetilde{\mu}_{\Omega^{2-}} - \widetilde{\mu}_{\Omega^{2-} CC}$ for $i = 0.7 \text{ A/cm}^2$.

図11 電極内酸化物イオンポテンシャル分布 (a) YSZ

表面, (b)z=1.24 µm 断面.

Fig.11 Oxide ion electrochemical potential distribution in the YSZ phase: Potential distribution (a) at the YSZ surface, (b) at $z = 1.24 \mu m$ cross section

図 12 電子電流およびイオン電流 Fig. 12 Averaged ionic and electronic current densities along z axis for $i = 0.7 \text{ A/cm}^2$.

図 13 イオンおよび電子電流線 Fig. 13 Ion and electron current

5. 結 言

FIB-SEM を用いて SOFC 燃料極3 次元構造を再構築 し、LBM による拡散と電気化学反応の連成計算を行っ た.その結果、以下の結論を得た.

- 1)重心法によって求めた全三相界面長さは 2.556 μm/μm³となった.また,電解質と集電層に連結 されている有効三相界面長さは全三相界面長 さの 40~65%程度となった.
- 2) 空隙の屈曲度ファクターは方向依存性が小さい が、Ni および YSZ 相の屈曲度ファクターは方 向依存性が大きい. 今回のサンプルでは領域寸 法が十分ではなかったためと考えられる.
- 3) 過電圧特性を精度良く予測するためには,100 nm/pixel 程度の格子解像度が必要である.
- 4)酸化物イオンポテンシャル分布は一様でなく、有効 反応域での断面内ポテンシャル標準偏差は、平均値 の10%~30%程度存在する.
- 5) 今後,様々な材料や製法の電極,劣化前後の構造等 に本手法を適用することで,電極反応機構の基礎的

理解に必要な定量的情報を提供できるようになる と期待される.

6. 謝辞

本研究は,新エネルギー・産業技術総合開発機構 (NEDO)の支援を受けた.記して謝意を表する.

参考文献

- J. R. Wilson, W. Kobsiriphat, R. Mendoza, H.-Y. Chen, J.M. Hiller, D. J. Miller, K. Thornton, P.W. Voorhees, S. B. Adler, and S. Barnett, *Nature Materials*, 5 (2006) 541-544.
- (2) D. Gostovic, J. R. Smith, D. P. Kundinger, K. S. Jones, and E. D. Wachsman, *Electrochem. Solid-State Letters*, 10 (12) (2007) B214-B217.
- (3) J. R. Smith, A. Chen, D. Gostovic, D. Hickey, D. P. Kundinger, K. L. Duncan, R. T. DeHoff, K. S. Jones, and E. D. Wachsman, *Solid State Ionics*, 180 (2009) 90-98.
- (4) J. R. Wilson, J. S. Cronin, A. T. Duong, S. Rukes, H.-Y. Chen, K. Thornton, D. R. Mumm and S. Barnett, J. Power Sources, 195(7) (2010) 1829-1840.
- (5) P. R. Shearing, J. Golbert, R. J. Chater, and N. P. Brandon, *Chem. Eng. Sci.*, 64 (2009) 3928-3933.
- (6) J. R. Izzo, Jr., A.S. Joshi, K. N. Grew, W. K. S. Chiu, A. Tkachuk, S. H. Wang, and W. Yun, J. Electrochem. Soc., 155 (5) (2008) B504-B508.
- (7) H., Iwai, N., Shikazono, T., Matsui, H., Teshima, M., Kishimoto, R., Kishida, D., Hayashi, K., Matsuzaki, D., Kanno, M., Saito, H., Muroyama, K., Eguchi, N., Kasagi, and H., Yoshida, *J. Power Sources*, 195(4) (2010), pp. 955-961.
- (8) N., Shikazono, D., Kanno, K., Matsuzaki, H., Teshima, S. Sumino, and N., Kasagi, J. *Electrochemical Soc.*, (2010) in press.
- (9) T. Matsui et al., ECS Trans., 25 (2009), 2023-2030.
- (10) T. Kawada et al., J. Electrochem. Soc., 137 (1990), 3042-3047.
- (11) J. Mizusaki et al., Solid State Ionics, 22 (1987), 313-322.
- (12) Y., Suzue, N., Shikazono and N., Kasagi J. Power Sources, 184 (2008), pp. 52-59.